Strength of a Resin Composite Core Build-Up with Prefabricated Posts: An In Vitro Study

By Glauber Vieira Duarte, DDS, MSc; Gustavo Pinheiro de Freitas, DDS, MSc; Cornell H Driessen, DDS, MSc, PhD; Maria Jacinta Moraes Coelho Santos, DDS, MSc, PhD; Anderson Pinheiro de Freitas, DDS, MSc, PhD; Gildo Coelho Santos Jr., DDS, MSc, PhD

ABSTRACT

Purpose: Determine the diametral tensile strength (DTS) of a resin composite core (Filtek Z250 - 3M) bonded to glass and carbon fibre posts of varying diameter.

Material and Methods: Part I, cylindrical samples of resin composite (C), measuring 6 mm × 3 mm, were fabricated (n = 10). Another two groups consisted of 1.5 mm glass-fibre posts (Reforpost - Angelus) (GF1.5) and 1.5 mm carbon-fibre posts (Reforpost - Angelus) (CF1.5) bonded to the resin disks. Part II, specimens were made using 1.1 mm glass-fibre post (GP1.1), and 1.1 mm carbon-fibre post (CF1.1). Specimens were light cured for 40 seconds each side, stored in 37°C distilled water for 7 days and submitted to a DTS test in a universal testing machine (EMIC DL2000). Data was recorded and analyzed using ANOVA with post-hoc pairwise test. Results revealed a statistically significant difference (p <.001) among the groups.

Results: Part I, the mean force (MPa) required to fracture the specimens for each group was: C: 52.33 (± 5.97), GF 1.5: 33.46 (± 4.35), CF 1.5: 35.74 (± 4.49). Control Group was significantly greater than the experimental groups but there was no difference between the two experimental groups. Part II, the mean force (MPa) for each group was: GF 1.1: 37.81 (± 4.46), and CF 1.1: 32.93 (± 3.53). Group GF 1.1 was significantly greater than GF 1.5 and CF 1.1, similar to GC 1.5,

About the Authors

Gildo Coelho Santos Jr., is assistant professor, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON

Glauber Vieira Duarte is with the Faculty of Dentistry, Federal University of Bahia, Brazil.

Gustavo Pinheiro de Freitas is with the Faculty of Dentistry, Federal University of Bahia, Brazil.

Cornell H. Driessen is assistant professor, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON

Maria Jacinta Moraes Coelho Santos is associate Professor, Department of Dental Clinics, Faculty of Dentistry, Federal University of Bahia, Brazil.

Anderson Pinheiro de Freitas is associate professor, Department of Dental Clinics, Faculty of Dentistry, Federal University of Bahia, Brazil.

Correspondence may be directed to Gildo C. Santos Jr. He can be reached at: gildo.santos@schulich.uwo.ca.
Cast posts have been used in restorative dentistry for more than 100 years. The main disadvantage of cast posts is the high modulus of elasticity of the metal, which exceeds by 8 to 15 times the modulus of elasticity of the dentin. This leads to a high incidence of fracture of the root due to a high stress concentration at the tooth-post interface. Moreover, cast posts require more frequent clinical sessions, more extensive removal of dental structure, and may stain the adjacent root area.

Prefabricated posts are now widely available and are made of carbon, glass, or quartz fibres. These posts have a modulus of elasticity similar to the dentin and allow the post to have the same flexion pattern as the tooth, thereby providing a homogeneous distribution of stress on the root and minimizing the incidence of root fractures.

The advantages of prefabricated posts are: they involve less tooth removal, require less time to prepare, are easily removed, are more esthetic, are available in different diameters, and adhere better to the dental structure and the crown. When non-metallic prefabricated posts are used in the restoration of endodontically treated teeth, a crown restoration can be prepared at the same appointment as the resin core is being built and the two components can be bonded together to form a single unit.

Fokkinga et al. investigated the fracture resistance and failure mode of crowns fabricated with fibre posts bonded to a resin composite core. The types of posts used were: (1) prefabricated metallic posts, (2) prefabricated fibreglass posts (3) cast posts, and (4) no posts (disks of solid resin composite). A static load was applied until the fracture of the samples using a universal testing machine. Results were similar for fracture resistance and failure mode among the groups, which suggests that posts did not decrease the fracture resistance of the crowns.

Heydecke et al. studied the fracture strength and survival rate of endodontically treated crowned maxillary incisors with proximal class III cavities and different core build-ups including titanium posts.
zirconia posts; hybrid composite filling partially the root canal, and access opening restored with resin composite. They found that the cementation of posts was comparable, but there was no evidence of advantageous fracture resistance when compared to the restoration of the endodontically treated tooth with composite alone.

The purpose of this study was to determine (1) the DTS of resin core material when bonded to prefabricated posts with different fibres, (2) the DTS of a resin core bonded to prefabricated posts with different diameters.

The null hypothesis is that there is no difference in DTS of the resin composite core material when bonded to glass fibre or carbon fibre prefabricated posts, or to posts with different diameters when compared to the resin core material alone.

Materials and Methods

Part I – Effect of Type of Fibre

Two commercial, fibre-reinforced, composite posts were tested. Materials used are listed in Table 1.

Thirty disc specimens were fabricated with a resin composite material (Filtek Z250 – 3M/ESPE) using a two-part, stainless steel dye. The inferior portion, measuring 80 mm in diameter with a central perforation of 2 x 1 mm, was used to position the prefabricated posts (Figure 1). The superior portion, measuring 70 mm in diameter, had a central perforation of 6 mm in diameter and 3 mm in depth. The central perforation of the inferior portion allows the positioning of a prefabricated post into the center of the specimen that is formed in the superior portion. Three groups of resin composite core specimens were prepared with this device, each consisting of 10 specimens. Resin composite discs without posts served as control group (Group C). The remaining specimens were made using either glass or carbon-reinforced post and resin composite core combinations as follows: Referpost (Glass Fibre) 1.5 mm diameter glass fibre post (Group GF 1.5) and Referpost (Carbon Fibre) 1.5 mm diameter carbon fibre post (Group CF 1.5).

Group C specimens were fabricated by inserting the resin composite (Filtek Z250 – 3M ESPE) into the stainless steel dye using a spatula and then the resin was light-cured for 40 seconds (Optilight Plus QTH unit – Gnatus – 540mW/cm2). The samples were removed from the dye, light-cured on the opposite surface for another 40 seconds and then stored in 37°C distilled water for seven days.

A one-way analysis of variance (ANOVA) was used to determine whether there was any difference among the three groups means (C, GF 1.5, and CF 1.5). The Tukey-Kramer test was used for pair-wise comparisons. A p value <.05 was considered to be statistically significant and a 25% difference in effect size was considered to be clinically significant.

Part II – Effect of Diameter of Fibre

In part II, new specimens were made, using 1.1 mm diameter glass fibre post and resin composite core (Group GF 1.1), and using 1.1 mm diameter carbon fibre post and resin composite core (Group CF 1.1) following the same procedures described above.

Results

The results of the DTS test are presented in Table 2. In part I, Group C (control group) displayed the highest mean DTS value, while Groups CF 1.5 and Group GF 1.5 presented similar, but showed lower fracture resistance values. The fracture resistance of Group CF 1.5 was slightly greater than that of Group GF 1.5. The amount of

Table 1. Materials Used

<table>
<thead>
<tr>
<th>Brand</th>
<th>Composition</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERPOST</td>
<td>Fibreglass post (1.5 mm and 1.1 mm)</td>
<td>Angellus</td>
</tr>
<tr>
<td>REFERPOST</td>
<td>Carbon fibre post (1.5 mm and 1.1 mm)</td>
<td>Angellus</td>
</tr>
<tr>
<td>Filtek Z250</td>
<td>Composite resin – Type II</td>
<td>3M ESPE</td>
</tr>
<tr>
<td>Single Bond</td>
<td>Bonding agent</td>
<td>3M ESPE</td>
</tr>
<tr>
<td>Silane</td>
<td>Silane</td>
<td>3M ESPE</td>
</tr>
</tbody>
</table>
force required to fracture the resin disc was 31.7% less for Group CF 1.5 and 36% less for Group GF 1.5 when compared to Group C.

The ANOVA indicated that the mean force required to fracture the resin disc was statistically significant among the groups (p < .001). Post hoc, pairwise comparisons using the Tukey-Kramer test revealed a statistically significant difference in mean fracture resistance of both Group CF 1.5 and Group GF 1.5 compared to the control group (p < .05). The difference in mean fracture resistance between Group CF 1.5 and Group GF 1.5 was not statistically significant (p > .05). All assumptions respecting ANOVA were satisfied.

In part II, the reduction of the glass fibre post diameter increased the fracture resistance of the resin core, while the reduction of the carbon fibre post diameter decreased the final strength of the core.

The amount of force required to fracture the resin disc was 27.7% less for Group GF 1.1 and 37.9% less for Group CF 1.1 when compared to Group C. These differences were deemed to be statistically significant.

Post hoc, pairwise comparisons using the Tukey-Kramer test revealed that the fracture resistance of Group GF 1.1 was significantly greater than that of Group GF 1.5 and CF 1.1 (p > .05). The comparison of the mean fracture resistance between Group CF 1.1 and Group CF 1.5 showed a statistically significant difference (p < .05). There were no statistical difference between Groups GF 1.1 and CF 1.5.

The SEM image of the surface of a fragment of a specimen made with glass fibre post at 500× magnification showed a cohesive failure of the post occurred upon fracture (Figure 4). This image shows that the carbon fibres are relatively smaller in diameter when compared to the glass fibres.

The scanning electron microscope (SEM) image of a fragment of a specimen made with carbon fibre post at 500× magnification displays cohesive failure also occurred with this type of post as evidenced by a peeling of the surface layer of the post occurred upon fracture (Figure 4). This image shows that the carbon fibres are relatively smaller in diameter when compared to the glass fibres.

Table 2. Mean force (MPa) required to fracture core specimen, by group

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>SD</th>
<th>SE</th>
<th>% Difference from Control</th>
<th>HG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group (C)</td>
<td>52.33</td>
<td>5.97</td>
<td>1.88</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>GF 1.1</td>
<td>37.81</td>
<td>4.46</td>
<td>1.41</td>
<td>-27.75%</td>
<td>b</td>
</tr>
<tr>
<td>CF 1.5</td>
<td>35.74</td>
<td>4.49</td>
<td>1.42</td>
<td>-31.70%</td>
<td>bc</td>
</tr>
<tr>
<td>GF 1.5</td>
<td>33.46</td>
<td>4.35</td>
<td>1.37</td>
<td>-36.10%</td>
<td>cd</td>
</tr>
<tr>
<td>CF 1.1</td>
<td>32.93</td>
<td>3.53</td>
<td>1.11</td>
<td>-37.08%</td>
<td>d</td>
</tr>
</tbody>
</table>

HG = Homogeneous Groups – Different letters means statistic difference among groups.

Discussion

Different mechanical tests have been used to evaluate the bond strength of fibre posts when bonded to a resin composite build-up core. The DTS is an evidence-based testing method because of its simplicity, uniformity and reproducibility. It is considered an important assay for simulating in-vitro, the tensile stress to which dental restorations are subjected in the oral cavity.

Thermocycling was not applied to the specimens. According to Purton et al. thermocycling should be given less emphasis in tests for the retention of root canal posts cemented with resin cements.

In another study investigating the effects of pre-treatment on bond strength between resin cements and various posts including prefabricated glass fibre posts and Interpenetrating Polymer Post (IPN post, Stick Tech), it was found that thermocycling had no significant influence. Cho et al. verified the DTS of two resin composites (XRV Herculite and Prodigy) for core build-up. They tested samples with the same diameter as the specimens evaluated in this study (6 mm × 3 mm) and reported average DTS values of 51 MPa and 55 MPa, respectively. Santos Jr. et al. also investigated a resin composite core build-up material (Tetric-Ceram) and reported mean values of DTS of 54 MPa. Those results are similar to our study where the average DTS value for the resin composite core (Z250) was 52.3 MPa.

In this study, the use of glass fibre and carbon fibre posts decreased the fracture resistance of the core build-up material by 31.7% for CF 1.5 and 36.1% for GF 1.5 respectively. Results demonstrated that the resin composite core material provides higher fracture resistance when used as a solid block.

The use of carbon fibres or glass fibres to prepare the posts did not result in any difference of strength of the samples, although there was difference in width of the fibreglass fibres compared to the carbon fibres.
The reduction of the post diameter to 1.1 mm (GF 1.1) increased the DTS values when compared to the 1.5 mm glass fibre posts (GF 1.5). This may be explained due to the increasing on the final volume of the core material.

The behaviour of Groups CF 1.5 and CF 1.1 which results demonstrated that the bigger the diameter the higher the DTS (statistically significant) probably can be explained because of the relatively smaller diameter of the carbon fibres compared to glass fibres and the higher number of the fibres per volume.

All resin composite samples with bonded fibre posts demonstrated cohesive failure. The failure occurs predominantly within the fibre-reinforced post along the interface between the resin matrix and the post. This finding suggests that the bond between the composite core material and the post surface was stronger than the bond between the internal fibres and the resin matrix of the post.

This study showed a decrease in fracture resistance of resin composite core build-up material when used in conjunction with these particular glass and carbon fibre prefabricated posts. This finding indicates that the glass fibre or carbon fibre posts used in this study do not strengthen resin composite core build-up materials. Thus, if the tooth has adequate sound structure, the use of prefabricated posts should be questioned.

Conclusion

The use of carbon fibre and glass fibre prefabricated posts utilized in this study, bonded to resin composite core build-up material decreased the fracture resistance of resin core material by about one third. Both carbon fibre and glass fibre posts with 1.5 mm diameter displayed similar behaviour to compressive forces but differs when 1.1 mm fibre posts where used.

The increasing on the diameter of the glass fibre post decreases the fracture resistance of samples.

Acknowledgment

We would like to thank Meghan Perippanayagam for her assistance to the preparation of this manuscript.

Disclosure

The authors declare no competing financial interest.

References